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Abstract: The problem of inverse synthetic aperture radar (ISAR) imaging can be expressed as a 
two-dimensional frequency estimation problem. Matrix enhancement and matrix pencil (MEMP) 
method is an effective frequency estimation method. This method belongs to the category of 
spectral estimation methods, and the performance of ISAR imaging using MEMP is sensitive to 
noise, which limits the application of this method in ISAR imaging. In the MEMP method, an 
enhanced matrix with a large dimension is first constructed according to the echo matrix. The 
enhanced matrix has low rank property when the scattering points in the imaging scene satisfy the 
sparse characteristic. Based on the low rank property of the enhanced matrix, we propose a 
denoising method for the MEMP. The simulation results prove that the proposed denoising method 
combining with the MEMP can achieve robust and effective high resolution imaging for ISAR. 

1. Introduction 
The inverse synthetic aperture radar (ISAR) imaging system has a uniform and dense filling in 

spatial spectral. In this case, the most common imaging method is the Fast Fourier Transform (FFT). 
According to the property of Fourier transform, the resolution ability of FFT method is limited by 
the range of spatial spectral filling. Therefore, the resolution of this method is limited, and high 
resolution imaging of radar system cannot be realized by FFT. In recent years, spectral estimation 
methods developed in array signal processing can achieve high resolution of direction of arrival 
estimation (DOA). Classical spectral estimation methods include MUSIC [2], ESPRIT [3], U-
ESPRIT ([7], [9]) and Matrix Pencil ([4], [8]). In this paper, we use spectral estimation methods to 
achieve high resolution imaging of ISAR system. Spectral estimation methods can achieve high 
resolution imaging, but they are sensitive to noise. Therefore, an effective denoising technique is 
needed before using the spectral estimation method for imaging. In ISAR system, the target 
scattering coefficient is sparse in the imaging scene [5], resulting that the echo matrix is low rank. 
In this paper, denoising is performed according to the low rank property of the echo matrix, which 
reduces the sensitivity of the spectral estimation algorithm to noise. 

2. ISAR signal model and MEMP method 
ISAR is an important form of radar system. It can realize real-time high resolution imaging of 

moving targets, and has wide application value in the military field. The resolution of the ISAR 
system in the range dimension and cross range dimension are determined by bandwidth and 
accumulation angle respectively. The signal model in this paper is similar to the signal model in [9]. 
After compensation, the ISAR echo expression is: 

( ) ( ) ( ){ }, , exp j4 cos sinm n m n nS
y x y x y c dxdyθ s p θ θ= − +∫∫c c                (1) 

Where S  is the imaging area, ( ),x yσ is target scattering coefficient in position ( ),x y . mf  is 
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sampled frequency points ( 0,1, , 1m M= − ) and nθ  is different look angles ( 0,1, , 1n N= − ). 
Therefore, B M f= ∆  is the signal bandwidth, and =N θΘ ∆  is the cumulative observation angle. 

,f θ∆ ∆  is the sampling interval for frequency and angle, respectively. 
In the case of the far field, the angle nθ  is relatively small. Therefore, based on the 

approximation cos 1nθ ≈ , sin n nθ θ= . The echo can be approximated as: 

( ) ( ) { }, , exp j4 j4m n m n mS
y x y x c y c dxdyθ σ p pθ≈ − −∫∫c c c                  (2) 

When the system bandwidth is limited, there is 0 01mf c f c λ≈ = . Therefore, the above echo 
can be further expressed as: 

( ) ( ) 0
j4j4

, = ,
nm yx

c
m n S

y e x y e dxdy
θ

ππ λθ σ
−−

∫∫
c

c                     (3) 

By meshing the imaging area discretely, the echo data can be written as a matrix form: 
H

x y=Y A Aσ                                                (4) 

The echo matrix Y  has a dimension of M N× . σ  is scattering coefficient matrix, and the 
dimension is P Q× . The scattering coefficient at its position ( ),p qx y  is ( ),pq p qx yσσ = . 

Define the spatial spectrum filling form of ISAR system as: 
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                                              (5) 

The echo can be further rewritten as: 
( ) ( ) ( ){ }, = , exp j m n

m n x yS
y x y k x k y dxdyθ σ p− +∫∫f 2                    (6) 

According to the spatial spectral filling form, the spatial spectral filling range in x  and y  
direction is = 2xK B c∆  and 0= 2yK λ∆ Θ , respectively. Then the resolution in range and cross 

range dimension is: 
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                             (7) 

It can be concluded that in the ISAR imaging system, the spatial spectral filling is dense and 
uniform. The imaging resolution reconstructed by the FFT method is limited by the spatial spectral 
filling range of the system. 

As previously mentioned, the spatial spectral filling is dense and uniform in ISAR system. So 
spectral estimation method can be using to overcome the resolution limitation by FFT. MEMP 
(Matrix Enhancement and Matrix Pencil) is a two-dimensional frequency estimation method. Firstly, 
the Enhanced matrix is constructed according to the echo matrix, and then the two-dimensional 
frequency is estimated by using the matrix pencil method, thereby estimating the position of 
scattering points. You can get more details about this method in [8]. 

3. Denoising Technique Based on Low Rank Property 
As we all know, the matched filtering (MF) algorithm is the most common denoising method, 

and this method has a universal performance for the denoising problem. In ISAR imaging, the target 
will exhibit sparse characteristics in space, that is, the number of strong scattering points is limited. 
This means that in the scattering coefficient matrix σ , the scattering coefficient is non-zero only at 
a few positions, which results in the echo matrix Y  having low rank property. If the low rank echo 
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matrix is denoised by the matched filtering method, a certain denoising performance will be 
obtained, but is not obvious. Matched filtering is a universal denoising method, it does not 
considered the low rank property of the echo matrix. In recent years, low rank matrix recovery 
technique has been widely used in image denoising. Many low rank matrix restoration algorithms 
have been proposed by domestic and foreign researchers ([10], [12]). The core idea of the denoising 
method based on the low rank property of the matrix is that when the matrix satisfies the low rank 
property, there is a strong correlation between the matrix elements. When the low rank matrix is 
contaminated by noise, there is little correlation between the noise matrix elements. The low rank 
denoising method uses the difference between the low rank matrix elements and the noise matrix 
elements to achieve an improvement in SNR. 

3.1 Matched Filtering Deniosing 
Assuming that the echo data is contaminated by noise, the noisy echo is expressed as: 

H
n x y= +Y A A Nσ                                                (8) 

For the noisy echo matrix nY  , we can obtain the matrix with the enhanced SNR after matched 
filtering: 

+ =H H H H H
n x n y x y x x y y x y= = +Y A Y A Y A NA A A A A A NA  σ                    (9) 

The enhanced SNR after matched filtering is: 

( )2 2
SNR=10lg H H H

x x y y x yF F
A A A A A NAσ                   (10) 

After matched filtering, the low rank echo matrix changes into H H
x x y yA A A Aσ , which still has  

low rank property. Therefore, a deeper denoising can be performed using the low rank property of 
the matrix. 

3.2 Denoising methods based on matrix low rank property 
When the matrix satisfies the low rank property, the denoising problem can be expressed as [5]: 

( ) 2
min rank . . n F

s t δ− ≤
Y

Y Y Y


                                        (11) 

Since the rank of the matrix is the same as the number of non-zero singular value of the matrix, 
the rank constraint of the matrix can be equivalent to the 0l  norm constraint of the matrix singular 
value. That is, the constraint problem of the above formula becomes: 

 ( ) 2

0
min . . n F

s ts δ− ≤
Y

Y Y Y


                                       (12) 

Where, ( )σ Y  represents one-dimensional singular value vector of the matrix Y . 
F

∗  

represents Frobenious norm. 
Regardless of the rank constraint or 0l  norm constraint of the matrix singular value, the 

optimization problem is NP-hard, and it is impossible to solve specificly. The most general solution 
is convex relaxation.Then the 0l  norm constraint of the matrix singular value becomes kernel norm 
constraint (KNC). The optimization problem can be expressed as: 

( ) 2
min . . n F

s ts δ
∗

− ≤
Y

Y Y Y


                            (13) 

Where, ( )σ
∗

Y  the kernel norm of the matrix which is defined as the sum of all singular 

values of the matrix Y . 
After convex relaxation,the optimization problem can be solved by the convex optimization 
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method and a global optimal solution can be obtained easily. However, the method of convex 
relaxation will lead to a large deviation between the obtained solution and the real solution. The 
fundamental reason is that the kernel norm can not describe the low rank property of the matrix 
precisely. In order to get more accurate solution, various non-convex constraints are used to 
approximate the rank constraint of the matrix. In [5], a low rank matrix denoising method based on 
hyperbolic tangent constraint (HTC) is studied. 

After the non-convex hyperbolic tangent constraint, the denoising problem becomes the 
following constraint optimization problem: 

( )( ) 2
min . .i n F

i
g s tg s δ− ≤∑

Y
Y Y Y



                          (14) 

Where, ( )gg ⋅  represents hyperbolic tangent function. The author in [5] uses a two-layer loop 

to solve such optimization problem. 
In this paper, we use iterative method to solve this problem. The denoising problem can be 

expressed as: 
22

,

1min . .
2 nF F

s t δ− − ≤
W V

WV Z Z Y                         (15) 

Where Z  is the auxiliary matrix. It has the same dimension as nY . In practice, we can 
estimate the number of scattering points in the scene according to the Gerschgorin disk criterion 
[11], and then we can obtain the rank of the pure echo matrix Y . So the rank of the matrix nY  is 

as same as the number of scattering points, i.e. ( )rank K=Y . Then the dimension of matrix W  is 

P K× , and the dimension of matrix V  is K Q× . δ  is a parameter related to the noise level. Due 
to the sparsity of scattering points in the scene, K  is much smaller than P  and Q . 

To solve this optimization problem, iterative Gauss-Seidel method will be commonly used [10]. 
In each iteration of the GS method, other variables are fixed and known, and one variable is 
minimized. For example, if Z  and V  is known, then the solution of W  becomes: 

2† 1arg min
2P K F×

+
∈

← = −
W

W ZV WV Z


                               (16) 

Where †  represents the Moore-Penrose inverse matrix. 
Therefore, the iterative process of the GS method can be expressed as following: 

    

( )
( ) ( ) ( )
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-1†
+ +

+

=

=

T T

T T

+

+ + +

+ +

←

←

←

W ZV ZV VV

V W Z W W W Z

Z W V

                      (17) 

When the GS method is used to solve the low rank matrix with larger dimension iteratively, the 
convergence speed of the algorithm is much slower. We have improved the GS method by 
weighting the current value with the value of the GS method in each iteration of the step to ensure 
fast convergence of the algorithm. The iterative process of the algorithm is: 
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Where 1ω ≥ , when =1ω  the iterative method is the GS method. Due to 1ω > , the influence of 
the current value on the iterative result is a negative contribution during the iterative process, so the 
forgetting speed of the current value will be faster, thus speeding up the convergence speed of the 
algorithm. 

4. Simulation Quasi Real Data Result 
The rank of the matrix is closely related to the singular value of the matrix. We first compare the 

three kinds of denoising algorithms, i.e. kernel norm constraint (KNC) denoising, hyperbolic 
tangent constraint (HTC) denoising and iterative denoising, using the singular value distribution of 
signal matrix and noise matrix. The ISAR echo data is generated firstly, and the simulation 
parameters are shown in table 1. In simulation, we assume that the scene satisfies the sparsity, that 
is, the number of non-zero scattering coefficients in the scene is relatively small compared to the 
number of discrete grids. Therefore, the echo matrix has a low rank property. 

Table 1.Simulation parameters of ISAR system 

center frequency 10GHz size of scence 6m×6.8m 
points of frequency 100 points of angle 100 

bandwidth 1GHz cumulative angle 5° 
number of grids in x 201 number of grids in y 201 

After generating the echo data, Gaussian noise with SNR of 0dB is added to the echo matrix, and 
the singular value distribution of the pure echo matrix and the noise matrix is obtained by the 
singular value decomposition (SVD), as shown by the black and yellow lines in figure 1. It can be 
seen that there is a significant difference of SV between the signal matrix and the noise matrix. This 
difference reflects the correlation of the matrix elements. If the SV distribution curve of the noise 
matrix is closer to the SV distribution curve of the signal matrix after denoising, the denoising 
performance of this algorithm is better. 

 

Figure 1. SV distribution curve of different denoising methods 

After denoising by the kernel norm constraint denoising method, the SV distribution of the noise 
is shown by the red line in Figure 1. It can be seen that after this denoising method, there is still a 
big gap between the SV distribution of the noise and signal. After denoising by the hyperbolic 
tangent constraint denoising method, the SV distribution of the noise is shown by the green line. In 
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this case, the SV distribution of the noise is closer to the signal, so the denoising performance has 
been greatly improved comparing with the red line. The blue line shows the SV distribution curve 
of noise after denoising using proposed iterative denoising method. The curve is closest to the SV 
distribution of the signal than the other two methods, so it has the best denoising performance. 

We compare the performance of the three denoising methods using Monte Carlo simulation to 
eliminate random error. The results are shown in the figure 2. Figure 2(a) is the curve of the echo 
SNR after denoising changing with the original echo SNR. In this simulation, the rank of the echo 
matrix is set to 5. We use 1000 Monte Carlo simulations to average the denoising performance. 
Figure 2(b) is a plot of the echo SNR as a function of matrix rank after denoising. In this simulation, 
the original echo SNR is set to 5dB, and the Monte Carlo simulation method is also used. 

  
(a) (b) 

Figure 2. Denoising performance of different methods 

The simulation of B-727 quasi real data is also performed. The Gaussian white noise with SNR 
of 5 dB is added to the original data, and the imaging results after denoising by matched filtering 
and the other three low rank denoising algorithms are shown in figure 3. 

  
(a) MF denoising (b) KNC denoising 

  
(c) HTC denoising (d) Iterative denoising 

Figure 3. Imaging results of B-722 using different denoising methods 
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It can be seen from the results that the kernel norm constraint can not approximate the rank 
constraint well, so the solution is not the optimal solution and the error is very large. Hyperbolic 
tangent constraint denoising and the the iterative denoising algorithm proposed in this paper have 
similar performance visually. The denoising performance of the three algorithms is given from the 
perspective of image entropy (IE) and image contrast (IC) quantitatively in table 2. It can be seen 
that the performance of iterative denoising is the best. 

Table 2. Performance comparison of different denoising methods 

  MF KNC denoising HTC denoising iterative denoising 

B-727 IE 7.8309 7.9548 7.5452 7.5394 
IC 6.9641 6.8534 7.2755 7.2781 

Finally, we combine the proposed denoising technique with spectral estimation method MEMP. 
The estimation results of the scattering points before and after denoising are shown in figure 4.  

  
(a) before denoising (b) after denoising 

Figure 4. Imaging results of B-722 using MEMP and iterative denoising technique 

The red circle is the position estimation results of scattering points. The background is the result 
obtained by the FFT method. It can be seen that the MEMP method is more accurate in estimating 
the position of the scattering points after the denoising, and its resolution performance is better than 
FFT method. So MEMP combining with our proposed iterative denoising technique can realize 
robust and effective high resolution imaging for ISAR. 

5. Conclusion 
The sensitivity of matrix enhancement and matrix pencil method to noise is illustrated in this 

paper. The denoising method based on the low rank property of the matrix is introduced, and the 
performance of various denoising methods is compared. Finally, the proposed denoising method is 
combined with the MEMP method to realize a robust high-resolution imaging technique. 
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